본문 바로가기

언어모델

한국어 (초)거대 공개 언어모델 - Polyglot, KoGPT GPT-3를 필두로 하여 거대 파라미터의 모델에 대규모 코퍼스를 학습한 (초)거대 언어모델은 자연스러운 문장을 생성하거나 다양한 태스크를 적은 학습 데이터로 수행하는 등 뛰어난 가능성을 보였다. 하지만 학습에 막대한 자본이 필요한 거대 언어모델은 AI의 독점화 및 권력화, 그리고 데이터 및 컴퓨팅 파워 격차에 따른 기술 격차 심화를 낳을 것이라는 우려도 존재한다. 빅테크 기업이 아닌 일반 기업이나 연구자가 거대 언어 모델을 다루기는 쉽지 않은 것은 엄연한 사실이다. 이러한 상황에 변화를 가져오기 위해 Huggingface가 중심이 되는 BigScience 프로젝트에서는 를 위해 전 세계 1,000여 명의 AI 연구자들이 힘을 합쳐 다양한 언어를 포괄하는 176B 규모의 언어모델 BLOOM을 확보하여 공개.. 더보기
[논문리뷰] DeepMind RETRO - 수 조개의 토큰 DB로부터 정보를 검색해 강화된 언어모델 블로그 : https://www.deepmind.com/publications/improving-language-models-by-retrieving-from-trillions-of-tokens 논문 : https://arxiv.org/abs/2112.04426 Motivation 언어 모델이란 '가장 자연스러운 단어 시퀀스를 찾아내는 모델'로 단어의 시퀀스에 확률을 할당(assign) 하는 일을 하는 모델이다. 그리고 이러한 작업을 학습하기 위해 가장 보편적으로 사용하는 방법은 언어모델이 이전 단어들이 주어졌을 때 다음 단어를 예측하도록 훈련시키는 것이다. 지난 몇 년 동안 컴퓨팅 자원의 발달에 힘입어 언어모델은 더 큰 파라미터를 더 많은 데이터에 대해 학습하는 방향으로 발전해왔다. 2020년 1750.. 더보기
한국어 언어모델: Korean Pre-trained Language Models Encoder Only Model (BERT 계열) 모델 모델 사이즈 학습 코퍼스 설명 BERT_multi (Google) vocab=10만+ - 12-layers 다국어 BERT original paper에서 공개한 multi-lingual BERT [벤치마크 성능] - [텍스트분류] NSMC Acc 87.07 - [개체명인식] Naver-NER F1 84.20 - [기계 독해] KorQuAD 1.0 EM 80.82%, F1 90.68% - [의미역결정] Korean Propbank F1 81.85% KorBERT _Morphology _WordPiece (ETRI) [Morphology] vocab = 30,349 [WordPiece] vocab = 30,797 - 12-layers 기사, 백과사전 .. 더보기