본문 바로가기

OpenAI

OpenAI GPT store 공개 - 내가 가진 아이디어로 노코딩 챗봇 개발 & 수익화하기 지난 11월 GPTs 기능이 공개된 후 300만 이상의 커스텀 ChatGPT가 생성되었다고 한다. 이미 많은 빌더들이 자신이 만든 GPTs를 다른 사람들도 쓸 수 있도록 공유하기도 했다. 이에 OpenAI는 1월 10일, ChatGPT Plus, Team, Enterprise 고객을 대상으로 GPT store을 론칭하였다. 현재 DALLE 활용하기, 글쓰기, 연구, 프로그래밍, 교육 등 다양한 분야에서 인기를 끌고 있는 GPTs를 GPT store의 커뮤니티 리더보드를 통해 확인할 수 있다. 예를 들어 아래와 같은 GPTs 어플리케이션이 트렌딩 하고 있다: AllTrails : 맞춤형 트레일 추천 Consensus : 2억 개의 학술 논문에서 결과를 검색하고 결과를 종합 Code Tutor : 코딩 기술.. 더보기
ChatGPT Fine-tuning 예시 | 언제, 어떻게 해야 하는가 지난 8월, OpenAI는 ChatGPT Fine-tuning API를 공개하였습니다. 뿐만 아니라 11월 OpenAI Dev Day 행사에서는 GPT-4에 대한 fine-tuning에 대한 실험적인 결과를 오픈하였습니다. 본 포스트에서는 Chat-GPT fine-tuning API 기능을 알아보고 fine-tuning을 통한 모델 개선 실습을 수행해 봅니다. Before >>> After >>> LLM 사용 전략의 기본, Prompt Engineering GPT(Generative Pre-trained Model)은 방대한 양의 문서에 대해 학습되었다. 뿐만 아니라 Instruction tuning 과정을 통해 입력의 지시사항을 따르도록 학습된 ChatGPT, Claude 등의 모델은 프롬프트를 통해 .. 더보기
[OpenAI DevDay] GPT-4 Turbo, DALL-E 3, Assistants API, ... 놀라운 혁신 발표 https://openai.com/blog/new-models-and-developer-products-announced-at-devday 2023년 11월 6일, AI 연구자로서 설렘이자 두려움인 OpenAI Dev Day에서 새로운 기능과 모델들이 대거 발표되었습니다. 성능은 더 좋아지고, 가격은 낮아지고, 사용은 유연하고 편리해져 가는 OpenAI...! 갈수록 넘사벽이 되어가고 있네요 ㅎㅎㅎㅎ 핵심 feature 요약 >>> GPT-4 Turbo with 128K context - 입출력 길이가 128K로 증가, 가격은 낮아졌다. GPT-4 Turbo with Vision - Assistants API - 개발자가 모델 & 툴을 쉽게 호출할 수 있도록 보조 API 제공 Multimodal Capa.. 더보기
LangChain | WebResearchRetriever을 활용하여 RAG (Retrieval Augmented Generation) 구현하기 지난 포스트에서는 LangChain을 활용하여 5세 아이의 단어공부를 도와주는 간단한 어플리케이션 코드를 작성해 보았다. 2023.08.16 - [AI] - LangChain이란? | 파이썬으로 LangChain 시작하기 LangChain이란? | 파이썬으로 LangChain 시작하기 참고문서: https://python.langchain.com/docs/get_started/quickstart.html 실습파일: LangChain이란? LangChain은 언어모델, 특히 대규모 언어모델(LLM)을 활용하여 구동하는 애플리케이션을 개발하기 위한 프레임워크 littlefoxdiary.tistory.com 이처럼 자유롭거나 창의적인 Open-World 질문에 대해서는 대규모 언어모델이 다소 창의적이거나 좋은.. 더보기
LangChain이란? | 파이썬으로 LangChain 시작하기 참고문서: https://python.langchain.com/docs/get_started/quickstart.html 실습파일: LangChain이란? LangChain은 언어모델, 특히 대규모 언어모델(LLM)을 활용하여 구동하는 애플리케이션을 개발하기 위한 프레임워크로, ● Data-aware: 언어 모델을 다른 데이터 소스와 연결하거나 ● Agentic: 언어 모델이 환경과 상호작용할 수 있도록 하는 애플리케이션 개발을 지원한다. 최근의 Large Language Model(LLM)은 뛰어난 맥락 이해 능력을 보이며, 일반적인 상황에서 인간과 자연스럽게 상호작용하는 것과 같이 행동한다. 하지만 도메인 지식이나 전문성이 필요한 태스크에 대해서는 구체적이고 유효한 답변을 제공하지 않을 수 있다. 예.. 더보기
GPT-4 : OpenAI의 '가장 진보된 AI 시스템' 공개 지난 3월 14일, OpenAI가 모델의 scaling에 대한 최첨단 연구의 결과물인 GPT-4을 발표하였다. GPT-4은 이미지와 텍스트를 입력받아 해당 인풋을 바탕으로 텍스트를 출력해낼 수 있는 대규모 멀티모달 모델이다. 공개된 영상에 따르면 GPT-4의 학습은 지난 8월에 끝지만, 모델을 발표하기까지의 6개월간 모델을 더 안전하고, 유용하며, 인간의 가치에 상응하도록 하는 작업을 거쳤다고 한다. 이 과정을 통해 내부적으로 ▲모델의 오용(adversarial usage) ▲원하지 않는 내용(unwanted content) ▲개인정보 이슈(privacy concern) 등에 대한 내부 가이드라인을 세웠다고 한다. " GPT-4은 인류의 삶에 유용하고, 실용적인 보조자로서의 역할을 수행할 것으로 기대한다.. 더보기
챗GPT는 어떻게 학습되었을까 - Human Feedback Reinforcement Learning (RLHF) 주요 출처 및 참고자료: https://huggingface.co/blog/rlhf MOTIVATION 최근 발표된 언어 모델은 사람이 입력한 프롬프트로부터 다양하고 그럴듯한 텍스트를 생성하는 데에 있어 뛰어난 능력을 보였다. 하지만 텍스트를 정의하는 것은 본직적으로 어려운 일인데, 이 기준이 주관적이고 상황에 따라 다르기 때문이다. 예를 들어 이야기를 쓸 때에는 창의성이 필요하고, 정보성 문단은 사실적이어야 하며 코드 스니펫과 같은 것은 실행 가능해야 한다. 이렇게 복잡한 속성들을 담은 loss function을 설계하는 것은 거의 불가능하다. 따라서 대부분의 언어모델은 cross entropy를 사용해 다음 토큰을 예측하는 태스크를 통해 학습한다. 이 loss는 좋은 텍스트를 생성했는지 판단하기에 직.. 더보기
ChatGPT: 진실되고 보다 이로운 답변을 생성하는, OpenAI의 GPT 시리즈 ChatGPT 🤖 2022년 11월에 공개된 InstructGPT의 자매 모델 ( 참고 : InstructGPT: 인간의 지시에 따른 결과물을 완성해내는 AI) 인간과 대화의 형식으로 상호작용할 수 있는 언어모델 대화를 통해 △이어지는 질문에 답하거나 △답변의 실수를 인정하고, △잘못된 전제 조건을 지적하거나 △부적절한 요구사항을 거절하는 능력을 보임 ✅ 예시 1: 코드 디버깅을 위해 추가 질문을 하는 ChatGPT 사용자 입력: this code is not working like i expect — how do i fix it? (이 코드는 제가 생각한대로 작동하지 않습니다. 어떻게 고쳐야 하나요?) ChatGPT 답변 👉 It’s difficult to say what’s wrong with the.. 더보기