RLHF 썸네일형 리스트형 Anthropic의 Constitutional AI: Harmless from AI Feedback | AI 헌법에 따라 행동하는 인공지능 참고 논문 및 자료: - Constitutional AI: Harmlessness from AI Feedback (Anthropic) - Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (Anthropic) - https://scale.com/blog/chatgpt-vs-claude Motivation: "AI의 행동을 감독하는 데에 AI를 활용하자" 최근 뛰어난 성능으로 큰 관심을 받고 있는 ChatGPT는 모델이 생성한 답변에 대한 사람의 선호 피드백을 활용하여 보다 사람이 선호하는 답변을 하도록 학습한, Reinforcement Learning from Human Feedback을 사용한.. 더보기 챗GPT는 어떻게 학습되었을까 - Human Feedback Reinforcement Learning (RLHF) 주요 출처 및 참고자료: https://huggingface.co/blog/rlhf MOTIVATION 최근 발표된 언어 모델은 사람이 입력한 프롬프트로부터 다양하고 그럴듯한 텍스트를 생성하는 데에 있어 뛰어난 능력을 보였다. 하지만 텍스트를 정의하는 것은 본직적으로 어려운 일인데, 이 기준이 주관적이고 상황에 따라 다르기 때문이다. 예를 들어 이야기를 쓸 때에는 창의성이 필요하고, 정보성 문단은 사실적이어야 하며 코드 스니펫과 같은 것은 실행 가능해야 한다. 이렇게 복잡한 속성들을 담은 loss function을 설계하는 것은 거의 불가능하다. 따라서 대부분의 언어모델은 cross entropy를 사용해 다음 토큰을 예측하는 태스크를 통해 학습한다. 이 loss는 좋은 텍스트를 생성했는지 판단하기에 직.. 더보기 이전 1 다음