본문 바로가기

Ai

GPT-4 : OpenAI의 '가장 진보된 AI 시스템' 공개 지난 3월 14일, OpenAI가 모델의 scaling에 대한 최첨단 연구의 결과물인 GPT-4을 발표하였다. GPT-4은 이미지와 텍스트를 입력받아 해당 인풋을 바탕으로 텍스트를 출력해낼 수 있는 대규모 멀티모달 모델이다. 공개된 영상에 따르면 GPT-4의 학습은 지난 8월에 끝지만, 모델을 발표하기까지의 6개월간 모델을 더 안전하고, 유용하며, 인간의 가치에 상응하도록 하는 작업을 거쳤다고 한다. 이 과정을 통해 내부적으로 ▲모델의 오용(adversarial usage) ▲원하지 않는 내용(unwanted content) ▲개인정보 이슈(privacy concern) 등에 대한 내부 가이드라인을 세웠다고 한다. " GPT-4은 인류의 삶에 유용하고, 실용적인 보조자로서의 역할을 수행할 것으로 기대한다.. 더보기
챗GPT는 어떻게 학습되었을까 - Human Feedback Reinforcement Learning (RLHF) 주요 출처 및 참고자료: https://huggingface.co/blog/rlhf MOTIVATION 최근 발표된 언어 모델은 사람이 입력한 프롬프트로부터 다양하고 그럴듯한 텍스트를 생성하는 데에 있어 뛰어난 능력을 보였다. 하지만 텍스트를 정의하는 것은 본직적으로 어려운 일인데, 이 기준이 주관적이고 상황에 따라 다르기 때문이다. 예를 들어 이야기를 쓸 때에는 창의성이 필요하고, 정보성 문단은 사실적이어야 하며 코드 스니펫과 같은 것은 실행 가능해야 한다. 이렇게 복잡한 속성들을 담은 loss function을 설계하는 것은 거의 불가능하다. 따라서 대부분의 언어모델은 cross entropy를 사용해 다음 토큰을 예측하는 태스크를 통해 학습한다. 이 loss는 좋은 텍스트를 생성했는지 판단하기에 직.. 더보기
한국어 (초)거대 공개 언어모델 - Polyglot, KoGPT GPT-3를 필두로 하여 거대 파라미터의 모델에 대규모 코퍼스를 학습한 (초)거대 언어모델은 자연스러운 문장을 생성하거나 다양한 태스크를 적은 학습 데이터로 수행하는 등 뛰어난 가능성을 보였다. 하지만 학습에 막대한 자본이 필요한 거대 언어모델은 AI의 독점화 및 권력화, 그리고 데이터 및 컴퓨팅 파워 격차에 따른 기술 격차 심화를 낳을 것이라는 우려도 존재한다. 빅테크 기업이 아닌 일반 기업이나 연구자가 거대 언어 모델을 다루기는 쉽지 않은 것은 엄연한 사실이다. 이러한 상황에 변화를 가져오기 위해 Huggingface가 중심이 되는 BigScience 프로젝트에서는 를 위해 전 세계 1,000여 명의 AI 연구자들이 힘을 합쳐 다양한 언어를 포괄하는 176B 규모의 언어모델 BLOOM을 확보하여 공개.. 더보기
[논문리뷰] DeepMind RETRO - 수 조개의 토큰 DB로부터 정보를 검색해 강화된 언어모델 블로그 : https://www.deepmind.com/publications/improving-language-models-by-retrieving-from-trillions-of-tokens 논문 : https://arxiv.org/abs/2112.04426 Motivation 언어 모델이란 '가장 자연스러운 단어 시퀀스를 찾아내는 모델'로 단어의 시퀀스에 확률을 할당(assign) 하는 일을 하는 모델이다. 그리고 이러한 작업을 학습하기 위해 가장 보편적으로 사용하는 방법은 언어모델이 이전 단어들이 주어졌을 때 다음 단어를 예측하도록 훈련시키는 것이다. 지난 몇 년 동안 컴퓨팅 자원의 발달에 힘입어 언어모델은 더 큰 파라미터를 더 많은 데이터에 대해 학습하는 방향으로 발전해왔다. 2020년 1750.. 더보기
AI alignment - 인공지능과 사람의 <동상동몽> 근래에 자주 보이는 AI 연구 키워드 중 하나가 [ AI alignment ] 이다. alignment [əˈlīnmənt] - 조정, 정렬, 정돈 AI 정렬? 익숙지 않은 개념 탓에 사전적인 의미만 가지고는 AI alignment가 어떤 의미인지 딱 와닿지 않는다. 위키피디아에 AI alignment를 검색해보니 AI alignment에 대해 아주 자세히 정리해놓은 페이지가 있었다. https://en.wikipedia.org/wiki/AI_alignment#Problem_description AI alignment - Wikipedia From Wikipedia, the free encyclopedia Jump to navigation Jump to search Issue of ensuring ben.. 더보기
[논문리뷰] GPT3의 새로워진 버전 - InstructGPT : 인간의 지시에 따른 결과물을 완성해내는 AI InstructGPT : Training language models to follow instructions with human feedback 논문 링크 : https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf 블로그 포스팅 : https://towardsdatascience.com/the-new-version-of-gpt-3-is-much-much-better-53ac95f21cfb GPT-3 설명 : 2020.06.22 - [AI] - [논문리뷰] GPT3 - Language Models are Few-Shot Learners GPT-3가 발표된 후 지난 2년간 GPT-.. 더보기
[논문리뷰] 알파코드 - Competition-Level Code Generation with AlphaCode 딥마인드 블로그 : https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode 논문 : https://arxiv.org/abs/2203.07814 이세돌 9단과의 경기에서 4-1로 승리한 알파고, 36만 개 이상의 단백질 3차원 구조를 예측한 알파폴드를 개발한 딥마인드(DeepMind) 팀이 이번에는 코딩 경진대회 문제를 푸는 코딩하는 AI, 알파코드 (AlphaCode)를 발표했다. 알파코드는 5,000명 이상의 참가자가 참가한 실제 경진대회에서 평균 54%의 상위 순위를 달성했다. 알파코드가 코딩을 학습한 방법은 최근 AI 분야에서 좋은 성능을 보이고 있는 사전학습과 fine-tuning 전략이다. 알파코드는 먼저 깃허브 등에 올.. 더보기
[ML Ops] - 지속가능한 AI서비스를 위한 Model Drift의 인지 및 관리 Model Drift란 "변화한다는 것만이 인생에서 유일하게 변하지 않는 점이다" - Heraclitus 머신러닝이 가정하는 강력한 전제 중 하나는 independent identical data이다. 즉, 모델이 지속적으로 성능을 유지하려면 모델이 처리하는 데이터와 환경이 동일해야 한다는 것이다. 하지만 현실 세계의 모든 것은 변한다. 고객, 환경, 상품, 산업 등등 변화는 끊임없이 지속된다. Model drift란 이렇게 변화하는 환경에 따라 모델의 성능이 저하되는 현상을 의미한다. Model Drift의 종류 Model Drift는 그 원인에 따라 아래과 같이 구분할 수 있다. Concept Drift : 예측하려고 하는 변수의 의미가 바뀌는 경우 (예) "금융사기" 예측 모델에서 "금융사기"의 정.. 더보기