본문 바로가기

트랜스포머

[논문리뷰] Relative Position Representations in Transformer MOTIVATION Transformer 아키텍쳐는 인풋 시퀀스 사이의 attention을 통해 인풋 사이의 관계를 모델링한다. 이때 이 매커니즘만으로는 시퀀스의 순서를 모델링할 수 없다. 예를 들어 "철수 / 가 / 영희 / 를 / 좋아해"라는 시퀀스와 "영희 / 가 / 철수 / 를 / 좋아해"라는 시퀀스에서 "철수"에 해당하는 attention layer의 아웃풋은 두 문장에서 완벽하게 동일하다. 이러한 문제를 해결하기 위해 2017년에 발표된 Transformer 논문에서는 인풋에 위치 인코딩 (position encoding)을 더해주는 방법을 사용하였다. 여기서 위치 인코딩은 (a)sinusoidal 함수를 사용한 결정론적인 벡터나 (b)학습한 벡터를 주로 사용한다. (a) sinusoidal .. 더보기
[논문리뷰] VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text 논문: https://arxiv.org/pdf/2104.11178.pdf IDEA - 라벨링되지 않은 데이터를 사용하여 multimodal representation을 학습하는 프레임워크 - VATT는 raw signal들을 인풋으로 받아 다운스트림 태스크에 적용할 수 있는 multimodal representation을 추출 - multimodal contrastive loss를 사용하여 모델을 E2E로 학습하고, 다양한 태스크에 평가 - modality에 국한되지 않는 single backbone Transformer에 대해 탐구한다 (sharing weight) Introduction ▲ Inductive bias vs Large scale training Convolution Neural Netw.. 더보기