본문 바로가기

AI

AI alignment - 인공지능과 사람의 <동상동몽> 근래에 자주 보이는 AI 연구 키워드 중 하나가 [ AI alignment ] 이다. alignment [əˈlīnmənt] - 조정, 정렬, 정돈 AI 정렬? 익숙지 않은 개념 탓에 사전적인 의미만 가지고는 AI alignment가 어떤 의미인지 딱 와닿지 않는다. 위키피디아에 AI alignment를 검색해보니 AI alignment에 대해 아주 자세히 정리해놓은 페이지가 있었다. https://en.wikipedia.org/wiki/AI_alignment#Problem_description AI alignment - Wikipedia From Wikipedia, the free encyclopedia Jump to navigation Jump to search Issue of ensuring ben.. 더보기
[논문리뷰] GPT3의 새로워진 버전 - InstructGPT : 인간의 지시에 따른 결과물을 완성해내는 AI InstructGPT : Training language models to follow instructions with human feedback 논문 링크 : https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf 블로그 포스팅 : https://towardsdatascience.com/the-new-version-of-gpt-3-is-much-much-better-53ac95f21cfb GPT-3 설명 : 2020.06.22 - [AI] - [논문리뷰] GPT3 - Language Models are Few-Shot Learners GPT-3가 발표된 후 지난 2년간 GPT-.. 더보기
[논문리뷰] 알파코드 - Competition-Level Code Generation with AlphaCode 딥마인드 블로그 : https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode 논문 : https://arxiv.org/abs/2203.07814 이세돌 9단과의 경기에서 4-1로 승리한 알파고, 36만 개 이상의 단백질 3차원 구조를 예측한 알파폴드를 개발한 딥마인드(DeepMind) 팀이 이번에는 코딩 경진대회 문제를 푸는 코딩하는 AI, 알파코드 (AlphaCode)를 발표했다. 알파코드는 5,000명 이상의 참가자가 참가한 실제 경진대회에서 평균 54%의 상위 순위를 달성했다. 알파코드가 코딩을 학습한 방법은 최근 AI 분야에서 좋은 성능을 보이고 있는 사전학습과 fine-tuning 전략이다. 알파코드는 먼저 깃허브 등에 올.. 더보기
[ML Ops] - 지속가능한 AI서비스를 위한 Model Drift의 인지 및 관리 Model Drift란 "변화한다는 것만이 인생에서 유일하게 변하지 않는 점이다" - Heraclitus 머신러닝이 가정하는 강력한 전제 중 하나는 independent identical data이다. 즉, 모델이 지속적으로 성능을 유지하려면 모델이 처리하는 데이터와 환경이 동일해야 한다는 것이다. 하지만 현실 세계의 모든 것은 변한다. 고객, 환경, 상품, 산업 등등 변화는 끊임없이 지속된다. Model drift란 이렇게 변화하는 환경에 따라 모델의 성능이 저하되는 현상을 의미한다. Model Drift의 종류 Model Drift는 그 원인에 따라 아래과 같이 구분할 수 있다. Concept Drift : 예측하려고 하는 변수의 의미가 바뀌는 경우 (예) "금융사기" 예측 모델에서 "금융사기"의 정.. 더보기
[논문리뷰] Relative Position Representations in Transformer MOTIVATION Transformer 아키텍쳐는 인풋 시퀀스 사이의 attention을 통해 인풋 사이의 관계를 모델링한다. 이때 이 매커니즘만으로는 시퀀스의 순서를 모델링할 수 없다. 예를 들어 "철수 / 가 / 영희 / 를 / 좋아해"라는 시퀀스와 "영희 / 가 / 철수 / 를 / 좋아해"라는 시퀀스에서 "철수"에 해당하는 attention layer의 아웃풋은 두 문장에서 완벽하게 동일하다. 이러한 문제를 해결하기 위해 2017년에 발표된 Transformer 논문에서는 인풋에 위치 인코딩 (position encoding)을 더해주는 방법을 사용하였다. 여기서 위치 인코딩은 (a)sinusoidal 함수를 사용한 결정론적인 벡터나 (b)학습한 벡터를 주로 사용한다. (a) sinusoidal .. 더보기
[논문리뷰] Multimodal Neurons in Artificial Neural Networks 원문: https://distill.pub/2021/multimodal-neurons/ ** 본 논문은 인공 뉴런이 특정 개념 및 그와 관련된 이미지에 반응하는 현상에 대해 다룹니다. 이 중 어떤 뉴런은 인물, 정치, 종교, 지역, 정신질환 등 민감한 주제를 다룹니다. 저자는 모델이 웹상의 자료를 학습함에 따라 편견과 스테레오타입을 학습했을 수 있으며, 어떤 독자들에게는 이러한 민감한 주제에 대해 읽는 것이 거북할 수 있음을 경고하였습니다. [ 같은 개념에 대한 다양한 형태에 반응하는 뉴런이 존재한다 ] 2005년 네이처지에 의 존재에 대한 연구가 발표되었다. 이 뉴런은 특정한 인물, 예를 들어 미드 에서 레이첼 역을 맡은 제니퍼 애니스톤이나 할리베리와 같은 사람들에게 특징적으로 반응한다. 흥미로운 점은.. 더보기
Topic Segmentation 서베이 (2) | 유사도 기반의 클러스트링 - Dot Plotting 원문 - http://www.eecs.qmul.ac.uk/~mpurver/papers/purver11slu.pdf 본 서베이에서는 긴 컨텍스트를 주제적 일관성이 있는 segment로 나누는 방법에 대해 다룹니다. 포스팅은 이 중에서 대화 전사 텍스트 혹은 대화 STT 결과물 등을 segment하는 방법에 초점을 맞추어 정리하였습니다. 지난 글 : 2021.10.05 - [AI] - Topic Segmentation 서베이 (1) | Lexical Similarity 기반 기법 - TextTiling in Python Topic Segmentation 서베이 (1) | Lexical Similarity 기반 기법 - TextTiling in Python 원문 - http://www.eecs.qmul.ac... 더보기
Topic Segmentation 서베이 (1) | Lexical Similarity 기반 기법 - TextTiling in Python 원문 - http://www.eecs.qmul.ac.uk/~mpurver/papers/purver11slu.pdf 본 서베이에서는 긴 컨텍스트를 주제적 일관성이 있는 segment로 나누는 방법에 대해 다룹니다. 포스팅은 이 중에서 대화 전사 텍스트 혹은 대화 STT 결과물 등을 segment하는 방법에 초점을 맞추어 정리하였습니다. Topic Segmentation이란 토픽 세분화란, 전체 녹취록이나 전사 스크립트 등을 보다 짧고, 주제적인 일관성을 가지는 덩이로 나누는 것을 의미한다. 통으로 되어 있는 문서를 이렇게 같은 주제로 나누는 작업은 검색(Information Retrieval)에서 필요한 부분의 정보만을 제공하는 등 유용하게 사용할 수 있다. 뿐만 아니라 컨텐츠에 있는 각 segment의 .. 더보기