분류 전체보기 121

[TensorFlow] Vision Modeling(1) MNIST 태스크 모델링하기

🙋‍♀️ TensorFlow Conv2D와 MaxPooling2D layer을 익히고, 모델을 만들어 학습하기 1. TensorFlow Conv2D TensorFlow Conv2D> https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D tf.keras.layers.Conv2D( filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), groups=1, activation=None, ... ) filters : 아웃풋 차원 수 kernel_size : 2d ConV 윈도우의 height & width 설정 strides : stri..

AI/DL Frameworks 2021.06.06

[TensorFlow] 텐서플로우 2.0 기본 - Sequential & Functional API

🙋‍♀️ TensorFlow Sequential API와 Functional API를 사용해 모델 구조를 만들고 학습하기 0. Sequential vs Functional API Sequential API 레이어의 흐름이 순차적인 경우 사용 (layer-by-layer) 텐서가 이전 레이어에서 다음 레이어로 바로 이어질 때에 사용 가능 Functional API Sequential API보다 유연한 API로 다음의 기능을 사용할 수 있음 여러 개의 input을 받거나 여러 개의 output을 내야 하는 경우 Layer을 공유하는 경우 (샴 네트워크 등....) Residual Network 구현 1. 태스크 이해하기 : MNIST 데이터 분류 - 손으로 쓴 0-9 사이의 숫자 이미지를 인풋으로 받아 숫자..

AI/DL Frameworks 2021.06.06

한국어 언어모델: Korean Pre-trained Language Models

Encoder Only Model (BERT 계열) 모델 모델 사이즈 학습 코퍼스 설명 BERT_multi (Google) vocab=10만+ - 12-layers 다국어 BERT original paper에서 공개한 multi-lingual BERT [벤치마크 성능] - [텍스트분류] NSMC Acc 87.07 - [개체명인식] Naver-NER F1 84.20 - [기계 독해] KorQuAD 1.0 EM 80.82%, F1 90.68% - [의미역결정] Korean Propbank F1 81.85% KorBERT _Morphology _WordPiece (ETRI) [Morphology] vocab = 30,349 [WordPiece] vocab = 30,797 - 12-layers 기사, 백과사전 ..

AI/Algorithm&Models 2021.05.16

[딥러닝 시리즈] ③ Loss 함수 설계하기 (2)

딥러닝 시리즈는 딥러닝 기본 개념을 복습하고, 심화 내용을 스터디하기 위해 시작한 포스팅입니다. 딥러닝을 연구하시는 모두의 피드백과 의견, 소통을 환영합니다 :) 2021.04.24 - [AI] - [딥러닝 시리즈] ① 딥러닝으로 풀고자 하는 문제에 대하여 2021.05.07 - [AI] - [딥러닝 시리즈] ② Loss 함수 설계하기 (1) 딥러닝에서 Loss 설계 시 성능 개선에 사용할 수 있는 기법들 Label Smoothing Hard Label - 분류 분석에서 Ground Truth 라벨은 정답 클래스는 1, 나머지는 0의 값을 가지는 one-hot vector로 넣게 된다. - 이렇게 모델에게 정답으로 입력하는 벡터가 one-hot vector인 것을 hard label이라고 부른다. - h..

[딥러닝 시리즈] ② Loss 함수 설계하기 (1)

딥러닝 시리즈는 딥러닝 기본 개념을 복습하고, 심화 내용을 스터디하기 위해 시작한 포스팅입니다. 딥러닝을 연구하시는 모두의 피드백과 의견, 소통을 환영합니다 :) 이전 포스팅에서는 딥러닝을 사용해 문제를 풀기 위해 구체화해야 할 세 가지 항목에 대해 이야기했다: ▲ 문제에 대한 출력 ▲ 문제를 풀기 위한 입력 데이터 ▲ 알고리즘의 성능에 대한 수치 척도 2021.04.24 - [AI] - [딥러닝 시리즈] ① 딥러닝으로 풀고자 하는 문제에 대하여 [딥러닝 시리즈] ① 딥러닝으로 풀고자 하는 문제에 대하여 세상에는 수많은 문제들이 있다. 오늘 점심은 무엇을 먹을지부터 시작해서 수도권에 사는 다섯 명의 친구들과 약속 장소를 잡는데 중간 지점을 찾는 문제, 메일을 쓰기가 너무 귀찮은데 키워드 littlefox..

[딥러닝 시리즈] ① 딥러닝으로 풀고자 하는 문제에 대하여

딥러닝 시리즈는 딥러닝 기본 개념을 복습하고, 심화 내용을 스터디하기 위해 시작한 포스팅입니다. 딥러닝을 연구하시는 모두의 피드백과 의견, 소통을 환영합니다 :) 세상에는 수많은 문제들이 있다. 오늘 점심은 무엇을 먹을지부터 시작해서 수도권에 사는 다섯 명의 친구들과 약속 장소를 잡는데 중간 지점을 찾는 문제, 메일을 쓰기가 너무 귀찮은데 키워드만 넣으면 알아서 써줄 수는 없나 하는 것까지. 이 중에는 을 사용해서 풀어낼 수 있는 문제도 있고, 그렇지 않은 것도 있을 것이다. AI가 워낙 핫하다보니 친구들이랑 얘기하다 보면 간혹 "AI로 이런 거는 안되나" 하는 주제가 나온다. 그럴 때면 나는 직업병처럼 딥러닝을 활용하여 문제를 성공적으로 풀어내기 위해 고려해야 하는 세 가지 포인트에 대해 생각해버린다...

오픈도메인 QA 리서치: Open Domain Question Answering

Open-domain question answering : 다양한 주제에 대한 대량의 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 태스크 DATA & TASKs [ Natural Questions ] ✅ 구글에 입력된 real query에 대해 long / short / others 타입의 QA - Open-domain QA 테스트를 위해 질문만 취하고, 답변을 찾을 수 있는 문단 정보는 삭제하는 방식으로 실험 진행 - long answer type의 경우 extractive snippet이라고 판단, 제거하고 실험 - (예. 답변이 5토큰 이내인 질문에 대해서만 실험, Lee et al., 2019) - 링크: ai.google.com/research/NaturalQuestions/ [ Cur..

AI/Algorithm&Models 2021.03.15

[논문리뷰] DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances

논문: arxiv.org/pdf/2012.01775.pdf IDEA BERT, GPT 등 사전학습 모델은 언어 AI 모델링에 필수적인 요소가 되었다. 특히 [대화모델] 부문에서 사전학습된 언어모델은 자연스러운 발화를 생성함에 있어 큰 발전을 가져왔다. 하지만, 지금까지의 연구는 대부분 대화의 맥락을 으로 처리했다. 이 나이브한 방법에서는 이어진 대화를 쭉 이어붙인 후 트랜스포머에 인풋으로 넣어 발화를 생성하는데, 이렇게 되면 모델은 토큰을 생성함에 있어 주어진 문맥에 대해 토큰 단위의 self-attention을 계산하게 된다. (www.groundai.com/www.groundai.com/project/hello-its-gpt-2-how-can-i-help-you-towards-the-use-of-pr..

AI/Algorithm&Models 2021.03.14

[논문리뷰] DALL-E: Zero-Shot Text-to-Image Generation

너무너무 궁금했던 DALL-E 페이퍼가 공개되었어요 두근두근❤ 사상은 예상했던 대로 텍스트와 이미지를 하나의 스트림 (concat)으로 트랜스포머에 밀어 넣는다는 것 이때 denoising VAE를 사용하여 픽셀 단위의 이미지를 이미지 토큰으로 변환해 사용했다고 한다. 이번 논문 역시 #대용량데이터와 #대규모모델이 핵심 키워드였는데, large-scale 모델 학습을 위한 16-bit 학습, distributed optimization 등 다양한 노하우가 녹아있다. 논문: arxiv.org/pdf/2102.12092.pdf 깃헙: github.com/lucidrains/DALLE-pytorch Abstract 본 논문에서는 하나의 데이터 소스로부터 transformer를 활용하여 text-to-image..

AI/Algorithm&Models 2021.03.13

Multimodal Deep Learning and AI Research : 멀티모달 연구에 대한 생각

휴가 낸 김에 AI 연구 방향에 대해 평소 가지고 있던 생각을 글로 적어 보자 🦊 사고는 언어의 틀 속에 존재하고, 따라서 우리가 사용하는 말의 체계에 의해서만 세상을 인지한다. 예를 들어 아래의 사진을 보고, 일반적인 사람은 일반적인 사진이라고 판단할 것이다. 고양이에 관심이 많은 사람이라면 사진이라고 생각할 것이며 등을 연상할 수도 있다. 이토록 인간의 사고에서 개념이란, 언어 체계에서 다른 말과의 관계에 의해 결여된 관념으로 정의된다. 반면에 내가 좋아하는 속담 중에 이런 말이 있다. [ 백문이 불여일견 ] " 털 무늬는 스팟(점박이), 로젯(표범 무늬), 마블 등의 타입이 있다. 스폿 타입은 토종 고양이 중에도 비슷한 무늬를 가진 것이 있으나(그래서 잘 모르는 사람은 코숏으로 오해하는 경우도 있다..

AI/Algorithm&Models 2021.02.16